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One of the key challenges within medical information
sciences is the development of useful models for
biological structure and its variability. Many
biomedical problems involve the elucidation of
structure (for example, from experimental data or
from imaging studies), and structural models can
often drive the process of inferring precise structure
from data. Ideally, model-driven data interpretation
combines knowledge about the generic features ofa
class of biological structures (as contained within a
model) with data that provide specific information
(often noisy) about a particular instance of the class.
In this paper we briefly discuss model-driven
determination ofbiological structure as an example of
a structural constraint satisfaction problem. We
describe a probabilistic implementation of structural
constraint satisfaction, and show that ourformulation
of a particular organ modeling technology (Radial
Contour Models) exhibits promising performance.
Our results demonstrate the utility of probabilistic
models for the solution of structural constraint
satisfaction problems.

INTRODUCTION

Reasoning about structure often involves moving
from generic models (based on a population of
training examples) to specific models (based on a
combination of generic models and case-specific data).
Such tasks can be mapped onto a class of problems
known as geometric constraint satisfaction problems
[9]: solutions are sought which are compatible with
the model and satisfy the case-specific constraints.
Constraint satisfaction problems can be formulated as
constraint graphs: each parameter (or variable) to be
estimated is a node within a constraint graph, and has
an associated set of possible values (the domain for
the node). The arcs within the graph are the
constraints between (or among) different variables.
Starting with a long initial list of possible values,
the goal is to eliminate incompatible values, and
arrive at a small number of values consistent with the
constraints. When all value lists have been
maximally pruned, then the set of possible individual
solutions can be generated by serially visiting all the
nodes, and selecting from each node a value that is
compatible with the values selected for previously
visited nodes. The theory of constraint satisfaction
networks is described in detail in [9].
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We have previously shown that geometric constraint
satisfaction problems can be solved using a
formulation in which the values associated with each
node take on discrete values, and the constraints are
used to prune these lists [4,6]. In addition, we have
shown that certain constraint satisfaction problems
can be formulated probabilistically so that each node
is represented as a continuous distribution [1,2].
Constraint arcs are then represented as probability
distributions between the nodes. The constraint
distributions, then, modify the node distributions
using the laws of conditional probability. This
formulation has been shown to work well in the case
of protein structure interpretation from NMR data [3].

In this paper, we investigate the utility of the
probabilistic reformulation of constraint satisfaction
problems in the context of a different biological
structure problem: organ contour modeling for
analysis of CT scans. We have previously reported a
formalism for modeling organ cross-sectional shapes
in CT scans, called the Radial Contour Model (RCM)
-an interval based geometric constraint network [6].
The organ cross-section can be represented by a
centrally located point from which a set of radial
"spokes" emanate from 0 to 360 degrees (at some
increment). The contour of an organ can be described
as a set of distances along each of the spokes. A
generic model describing the shape and range of
variation of a shape class is built by examining a
training set of similarly-shaped organ cross-sections
and representing constraints as the range of slopes of
the lines between neighboring radials. In terms of
constraint satisfaction, therefore, the variables (nodes)
are the distances along each of the radials. The set of
values for each node initially can range from 0 to
infinity, but based on training data can be narrowed to
a smaller range. The arcs between nodes are the
constraints placed on the radials by their expected
relationship. We have shown that this representation
is useful for semi-automated segmenting as well as
organ identification [6].

Using the same constraint satisfaction analogy, we
have defined a probabilistic model in which the
variables are also radial distances, but are represented
as continuous probability distributions over the
distances (instead of discrete ranges). We have defined
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constraints based on the covariation of these variables
(instead of ranges of ratios). We show that as we
introduce data about a particular radial distance into
our model (as would occur, for example, in a model-
based image segmentation system), we can update our
estimate of the value of the other radials using the
laws of conditional probability. Specifically, we use
a Bayesian parameter estimator [8]. Our estimates
improve rapidly and converge on the actual contour
relatively quickly. We will describe the machinery of
our model, and illustrate preliminary tests of its
performance. Our work differs from previous work in
probabilistic constraint satisfaction [7] because we
use continuous variables, instead of assigning
probabilities to discrete variable values.

METHODS

We represent a structural model with two main data
structures: a vector of the parameters to be estimated
(which represents the mean value of our variable or
node), and a variance/covariance matrix which
represents the range of values that the parameters can
assume (the variance of each parameter) as well as the
constraints between parameters (the covariance
between parameters). In the case of the RCM, the
state vector is a list of the average radial distance from
the origin for each of the angles from 0 to 360. In
the work described here (as in Brinkley [6]), we
always use 24 radials separated by 15 degrees each.
Thus, our state-vector has 24 elements:

x=[rO rl r2 ... r22 r23] (1)

The second element of our representation is the
variance/covariance matrix which captures two
essential features of a structural model, (1) the
variance over the training set of each of the elements
of the state vector (that is, the variance of each ri) is
contained along the diagonals, and (2) the covariance
between radials, a linear approximation of the
dependence between two radials, is contained along
the off-diagonals. The variance/covariance matrix,
therefore contains 24 x 24 = 576 elements:

FTrO UrOrl
2
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2rirj = E(rirj) - E(ri)E(rj) (4)
The covariance between two radials is a linear
estimate of how the radials vary with one another. A
positive value for covariance indicates that two radials
are positively correlated, whereas a negative value for
covariance indicates that the two radials are negatively
correlated. (Note that covariance is the numerator of
the standard correlation coefficient, which is
normalized by the product of the variances).

Given a training set, we can calculate a model by
calculating the empirical means (to provide the
average values for the state vector, x), and calculating
the empirical variances and covariances (using the
above formula) in order to instantiate the matrix
C(x). The resulting data structures are a
probabilistic representation of a constraint network.
The constraints between different parameters are
represented as a covariance, and there is a covariance
between every pair of parameters. Thus, the
covariance matrix is a dense network of
interconnections that describe the dependence of each
parameter on the others. The covariances are linear
estimates of the relationship between two parameters.
They create a highly connected data structure in which
multiple dependencies can be propagated over many
variables.

Introducing Data and Refining the Model

The model calculated in a manner described above is a
generic model that summarizes the range of
structures in the training set (see Figure 2A). As
information is gathered about a particular structure,
the model can be used to create a customized estimate
of the structure, incorporating the measured data as
well as the a priori model (Figures 2B, 2C, and 2D).
Measurements are modeled as a function of the
parameter vector, x, and a mean-zero Gaussian noise
term, v:

z=h(x)+v (5)

where z is the measured value, h(x) is the function
describing how z would be predicted from the state
vector, and v is a random noise process that causes z
and h(x) to be different. In general, z and v are

(2) vectors, and h(x) is a vector function. In the case of
the RCM model, the measurements are the radial
distance of an organ edge from the origin of the
model. Thus, in this case,

where variance is defined as:

cyvaria i - E(ri)
and covariance is defined as:

h(x) = ri
(3)

(6)

where ri is the radial being measured. V is a
function of the measurement technology; in this work
we assume that radials are determined to within 1.0
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mm. v is assumed to be normally distributed (ol
a good assumption in the case of biologi
structure). We have shown elsewhere that h(x)
be non-linear and still yield good solutions us
iterative techniques [I].

Given a model (x and C(x)) and a measurement
our goal is to create an updated model t
incorporates the measurement and its error into
model. The equations for combining these data
derived from Bayes' rule [8]:

x(new) = x(old) + K [z - h(x(old))]

C(new) = C(old) - K H C(old)
where

K = C(old) HT [H C(old) HT + v]-l
and

H=c5h(x)
Sx

ften
ical
can
;ing

t, z,

1) The initial error of the test cases. We would
expect that a good model would describe cases not
included in the training set as well as it describes
those included in the training set--this is a measure of
the a priori validity of the model.

that 2) The distance of each radial estimate from the
the solution. We would expect that as data are introduced
are the average error would decrease. Clearly, if all the

distances are given (with low variance), the solution
is specified. It is also important to see how accurate

(7) the estimate is when only a few distances are
provided.

(8)
3) The average uncertainty of each parameter as a

(9) function of the number of distances introduced. We
would expect that the model's uncertainty would
decrease monotonically as information is introduced.

RESULTS AND DISCUSSION
(10)

These updating formulae are Bayesian in the sense
that they combine a prior information contained in
the model (x(old), C(x(old)) with measurement
data and measurement noise (z, v) to provide updated
estimates. They can be replaced with equivalent
iterative equations in the case where h(x) is non-
linear [8].

Experiments with RCM

In order to test this representation on biological organ
data, we used the data described in [6] for one view of
the kidney and one view of the spleen. These were
chosen because they are irregular contours. The
kidney at the level of the hila has a marked notch, and
the spleen has an amoeboid shape at the cut level
used.

For each of the two models, we used a training set of
15 cross sectional CT scans, which were manually
aligned and for which radii were measured manually.
We tested the algorithm on three test cases, which
were not used for training. For each test case, we
introduced the radii at 0 and 180 degrees (the "poles"),
and then introduced the additional radial constraints
sequentially. This procedure simulates that used
previously, in which the model was sequentially
updated by edge data obtained along selected radials in
the image [6]. Each radii was assumed to be
introduced with a variance of 0.06 mm2, which
implies two standard deviations of 0.5 mm on each
side of the mean. In order to test the suitability of
the model and computational machinery, we measured
three things:

The generic model of the kidney hila resulting from
the 15 test cases is illustrated in Figure 2A. The
remainder of Figures 2 shows progress of the
algorithm as it refines its estimate of the organ for
which measurements are being provided. There are
three ways to judge the initial adequacy of our model.

1. Initial error of test data. We evaluated how well
the model describes test data which it has not yet
seen. For each radii in a test case, we calculated the
number of standard deviations it was from the mean
of the a priori model. This is calculated as

E = (r.., - r,,,d) (11)

where Ec is the error to be calculated for a given
radial, rmodel is the radius in the calculated model,
v is the variance of that radial within the model, and
ractual is the actual radius of the test case. This
formula provides the error in units of standard
deviations. When we evaluated our test cases against
the generic model, all the radii occur within 2.0
standard deviations of the expected values and expected
variance. Thus, the model captures the generic shape
of the organs adequately.

2. Rate of convergence of generic model to specific
model. We introduced the radial distances (and their
uncertainty) into the model using equations (7) and
(8) above. After each radius was introduced, we had a
more customized model that combines the initial
generic model with the measurement data. Figure 2
shows graphically how the model is refined as more
constraints are introduced. Figure I shows how the
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RMS difference between predicted radii and actual radii
is reduced as constraints are introduced. It is not
surprising that the model is a good one after all 24
radial distances are supplied, but it is somewhat
surprising that after only 4 radial distances are
provided (in the case of the kidney), the algorithm has
come within 1.8 mm of the 24 correct radii (from a
starting RMS error of 5.5 mm). This illustrates the
power of using the covariance information.

Figure 1. Average RMS error for test cases as
function of number of constraints introduced. The
spleen data is noisier, and thus starts with greater
uncertainty.
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Table I. Average radial variances for 3 test cases as
constraints are introduced sequentially.

Model Kidney Spleen
(mm2) (mm2)

Initial Average Var. 44.50 90.25
Avg. Var. after2radii 28.60 52.34
Avg. Var. after 8 radii 2.84 16.13
Avg. Var. after 16 radii 0.20 3.10
Avg. Var. after 24 radii 0.06 0.06

3. Rate of variance reduction. Table I shows how
the average uncertainty in radial distances decreases as
information is supplied. In the case of the kidney,
there is an initial uncertainty for each radius of about
45 mm2. The introduction of 8 constraints reduces
this uncertainty to 2.8 mm2. The introduction of all
24 constraints reduces the uncertainty to within the
tolerance of the measurements. Table I also shows
similar information for the spleen data, which is

considerably more noisy. As can be seen, the initial
variance is much larger, and more radial constraints
are required to reach the same level of certainty as
with the kidney

CONCLUSIONS

The results reported here show the applicability of the
probabilistic formulation of constraint satisfaction to
modeling organs. We have demonstrated its
performance in the case of RCMs. Our model is
general and can be applied directly to other parametric
organ models using equations 1-10. We have shown
that our model is easy to build from a training set
using the standard definitions of mean, variance and
covariance. We have shown that our model is able to
express the average structure of two irregular organ
contours (spleen and kidney) as well as their
variability. Finally, we have shown that the update
equations (7-10) are useful for introducing constraints
and producing updated estimates of structure (by
combining the constraints with the pre-existing
model in a Bayesian fashion). We have not
demonstrated that our probabilistic formulation is
superior to the discrete approaches previously
described. However, the performance on these test
data sets (and its performance in the realm of
molecular structure elucidation [3,4]) indicates that it
may provide a powerful alternative.
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Figure 2A. The generic probabilistic model shown
superimposed on the actual CT cross-section of a test-
case kidney. The mean model is shown as the center
contour. Contours at 2 SD above and below the
means are also drawn. This represents the initial
model as generated from the 15 test cases.
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Figure 2C. The model after introduction of 8
constraints. The mean model now matches the actual
contour well. The errors are small along radials for
which constraints have been introduced. The errors
are larger in adjacent areas for which there are no
measurements, although the mean estimate is good.
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Figure 2B. The model after two poles (at 0 and 180
degrees) have been introduced. The mean contour and
the errors are updated to reflect the new information.
There are still significant deviations of the model
from the actual contour--two radii (and the model) do
not fully specify the contour.

Figure 2D. After all 24 radial distances are provided
the model converges on the exact contour, with very
low uncertainty (mean and 2 SD errors virtually
coincide).
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